1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
| import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize from mpl_toolkits.mplot3d import Axes3D import warnings warnings.filterwarnings('ignore')
STEFAN_BOLTZMANN = 5.67e-8 SOLAR_CONSTANT = 1361
class SpacecraftThermalOptimizer: """ Spacecraft thermal design optimization considering: - Multi-layer insulation (MLI) - Radiative heat transfer - Weight constraints - Cost optimization """ def __init__(self): self.surface_area = 10.0 self.electronics_power = 500 self.T_space = 4 self.T_sun_side = 393 self.T_shade_side = 173 self.T_min_electronics = 253 self.T_max_electronics = 343 self.T_min_battery = 273 self.T_max_battery = 323 self.mli_properties = { 'thermal_conductivity': 0.002, 'density': 50, 'cost_per_kg': 10000, 'emissivity_low': 0.03, 'emissivity_high': 0.8 } self.launch_cost_per_kg = 5000 self.thermal_control_base_cost = 50000 self.penalty_cost_per_degree = 1000 def calculate_heat_transfer(self, thickness, emissivity): """ Calculate heat transfer through MLI and radiation Args: thickness: MLI thickness in meters emissivity: Effective emissivity of outer surface Returns: dict: Heat transfer rates and temperatures """ k = self.mli_properties['thermal_conductivity'] q_conduction = (k * self.surface_area * (self.T_sun_side - self.T_shade_side)) / thickness T_avg_exterior = np.sqrt((self.T_sun_side**2 + self.T_shade_side**2) / 2) q_radiation_out = (STEFAN_BOLTZMANN * self.surface_area * emissivity * (T_avg_exterior**4 - self.T_space**4)) absorptivity = 0.3 q_solar = SOLAR_CONSTANT * self.surface_area * absorptivity * 0.5 q_net = q_solar + self.electronics_power - q_radiation_out - q_conduction thermal_mass = 1000 T_internal = self.T_space + (q_net / (STEFAN_BOLTZMANN * self.surface_area * 0.1)) return { 'q_conduction': q_conduction, 'q_radiation_out': q_radiation_out, 'q_solar': q_solar, 'q_net': q_net, 'T_internal': T_internal, 'T_electronics': T_internal + 10, 'T_battery': T_internal + 5 } def calculate_mass_and_cost(self, thickness): """Calculate MLI mass and associated costs""" volume = self.surface_area * thickness mass = volume * self.mli_properties['density'] launch_cost = mass * self.launch_cost_per_kg material_cost = mass * self.mli_properties['cost_per_kg'] return mass, launch_cost + material_cost def temperature_penalty(self, temperatures): """Calculate penalty for temperature violations""" penalty = 0 T_electronics = temperatures['T_electronics'] T_battery = temperatures['T_battery'] if T_electronics < self.T_min_electronics: penalty += (self.T_min_electronics - T_electronics) * self.penalty_cost_per_degree elif T_electronics > self.T_max_electronics: penalty += (T_electronics - self.T_max_electronics) * self.penalty_cost_per_degree if T_battery < self.T_min_battery: penalty += (self.T_min_battery - T_battery) * self.penalty_cost_per_degree elif T_battery > self.T_max_battery: penalty += (T_battery - self.T_max_battery) * self.penalty_cost_per_degree return penalty def objective_function(self, design_vars): """ Objective function to minimize total mission cost Args: design_vars: [thickness (m), emissivity] Returns: float: Total cost ($) """ thickness, emissivity = design_vars if thickness <= 0.001 or thickness > 0.1: return 1e10 if emissivity <= 0.01 or emissivity > 1.0: return 1e10 heat_results = self.calculate_heat_transfer(thickness, emissivity) mass, material_launch_cost = self.calculate_mass_and_cost(thickness) temp_penalty = self.temperature_penalty(heat_results) total_cost = (material_launch_cost + self.thermal_control_base_cost + temp_penalty) return total_cost def optimize_design(self): """Perform optimization to find optimal MLI thickness and emissivity""" x0 = [0.02, 0.5] bounds = [(0.001, 0.1), (0.01, 1.0)] result = minimize(self.objective_function, x0, method='L-BFGS-B', bounds=bounds) return result def analyze_design_space(self): """Analyze the design space to understand trade-offs""" thickness_range = np.linspace(0.005, 0.08, 50) emissivity_range = np.linspace(0.1, 0.9, 40) cost_matrix = np.zeros((len(thickness_range), len(emissivity_range))) temp_matrix = np.zeros((len(thickness_range), len(emissivity_range))) mass_matrix = np.zeros((len(thickness_range), len(emissivity_range))) for i, thickness in enumerate(thickness_range): for j, emissivity in enumerate(emissivity_range): cost = self.objective_function([thickness, emissivity]) heat_results = self.calculate_heat_transfer(thickness, emissivity) mass, _ = self.calculate_mass_and_cost(thickness) cost_matrix[i, j] = cost if cost < 1e9 else np.nan temp_matrix[i, j] = heat_results['T_electronics'] mass_matrix[i, j] = mass return thickness_range, emissivity_range, cost_matrix, temp_matrix, mass_matrix
optimizer = SpacecraftThermalOptimizer()
print("🚀 SPACECRAFT THERMAL DESIGN OPTIMIZATION") print("=" * 50)
print("\n📊 Running optimization...") result = optimizer.optimize_design()
optimal_thickness, optimal_emissivity = result.x optimal_cost = result.fun
print(f"\n✅ OPTIMAL DESIGN FOUND:") print(f" MLI Thickness: {optimal_thickness*1000:.1f} mm") print(f" Surface Emissivity: {optimal_emissivity:.3f}") print(f" Total Mission Cost: ${optimal_cost:,.0f}")
heat_results = optimizer.calculate_heat_transfer(optimal_thickness, optimal_emissivity) mass, material_cost = optimizer.calculate_mass_and_cost(optimal_thickness)
print(f"\n🌡️ THERMAL PERFORMANCE:") print(f" Electronics Temperature: {heat_results['T_electronics']:.1f} K ({heat_results['T_electronics']-273:.1f}°C)") print(f" Battery Temperature: {heat_results['T_battery']:.1f} K ({heat_results['T_battery']-273:.1f}°C)") print(f" Heat Conduction: {heat_results['q_conduction']:.1f} W") print(f" Heat Radiation: {heat_results['q_radiation_out']:.1f} W")
print(f"\n⚖️ MASS AND COST BREAKDOWN:") print(f" MLI Mass: {mass:.2f} kg") print(f" Launch + Material Cost: ${material_cost:,.0f}") print(f" Temperature Penalty: ${optimizer.temperature_penalty(heat_results):,.0f}")
print(f"\n🎯 DESIGN VERIFICATION:") temp_ok = (optimizer.T_min_electronics <= heat_results['T_electronics'] <= optimizer.T_max_electronics and optimizer.T_min_battery <= heat_results['T_battery'] <= optimizer.T_max_battery) print(f" Temperature Constraints: {'✅ SATISFIED' if temp_ok else '❌ VIOLATED'}")
print(f"\n🔍 Analyzing design space...") thickness_range, emissivity_range, cost_matrix, temp_matrix, mass_matrix = optimizer.analyze_design_space()
fig = plt.figure(figsize=(20, 15))
ax1 = plt.subplot(2, 3, 1) T, E = np.meshgrid(thickness_range * 1000, emissivity_range) valid_costs = np.where(np.isfinite(cost_matrix.T), cost_matrix.T, np.nan) contour = plt.contourf(T, E, valid_costs, levels=20, cmap='viridis') plt.colorbar(contour, label='Total Cost ($)') plt.contour(T, E, valid_costs, levels=10, colors='white', alpha=0.6, linewidths=0.5) plt.plot(optimal_thickness*1000, optimal_emissivity, 'r*', markersize=15, label='Optimal Design') plt.xlabel('MLI Thickness (mm)') plt.ylabel('Surface Emissivity') plt.title('Total Mission Cost Optimization') plt.legend() plt.grid(True, alpha=0.3)
ax2 = plt.subplot(2, 3, 2) temp_contour = plt.contourf(T, E, temp_matrix.T, levels=20, cmap='coolwarm') plt.colorbar(temp_contour, label='Electronics Temperature (K)')
plt.contour(T, E, temp_matrix.T, levels=[optimizer.T_min_electronics, optimizer.T_max_electronics], colors=['blue', 'red'], linewidths=2, linestyles=['--', '--']) plt.plot(optimal_thickness*1000, optimal_emissivity, 'r*', markersize=15, label='Optimal Design') plt.xlabel('MLI Thickness (mm)') plt.ylabel('Surface Emissivity') plt.title('Electronics Temperature Distribution') plt.legend() plt.grid(True, alpha=0.3)
ax3 = plt.subplot(2, 3, 3) mass_contour = plt.contourf(T, E, mass_matrix.T, levels=20, cmap='plasma') plt.colorbar(mass_contour, label='MLI Mass (kg)') plt.contour(T, E, mass_matrix.T, levels=10, colors='white', alpha=0.6, linewidths=0.5) plt.plot(optimal_thickness*1000, optimal_emissivity, 'r*', markersize=15, label='Optimal Design') plt.xlabel('MLI Thickness (mm)') plt.ylabel('Surface Emissivity') plt.title('MLI Mass Distribution') plt.legend() plt.grid(True, alpha=0.3)
ax4 = plt.subplot(2, 3, 4) thickness_test = np.linspace(0.005, 0.08, 100) costs = [] temps = [] masses = []
for t in thickness_test: cost = optimizer.objective_function([t, optimal_emissivity]) if cost < 1e9: heat_res = optimizer.calculate_heat_transfer(t, optimal_emissivity) mass, _ = optimizer.calculate_mass_and_cost(t) costs.append(cost) temps.append(heat_res['T_electronics']) masses.append(mass) else: costs.append(np.nan) temps.append(np.nan) masses.append(np.nan)
plt.plot([t*1000 for t in thickness_test], costs, 'b-', linewidth=2, label='Total Cost') plt.axvline(optimal_thickness*1000, color='red', linestyle='--', alpha=0.7, label='Optimal Thickness') plt.xlabel('MLI Thickness (mm)') plt.ylabel('Total Cost ($)', color='blue') plt.title('Cost vs Thickness Trade-off') plt.grid(True, alpha=0.3)
ax4_twin = ax4.twinx() ax4_twin.plot([t*1000 for t in thickness_test], [t-273 for t in temps], 'g-', linewidth=2, label='Electronics Temp') ax4_twin.axhline(optimizer.T_min_electronics-273, color='orange', linestyle=':', alpha=0.7, label='Min Temp Limit') ax4_twin.axhline(optimizer.T_max_electronics-273, color='orange', linestyle=':', alpha=0.7, label='Max Temp Limit') ax4_twin.set_ylabel('Temperature (°C)', color='green') ax4_twin.legend(loc='upper right') ax4.legend(loc='upper left')
ax5 = plt.subplot(2, 3, 5) heat_components = ['Solar Input', 'Electronics', 'Conduction Loss', 'Radiation Loss'] heat_values = [heat_results['q_solar'], optimizer.electronics_power, -heat_results['q_conduction'], -heat_results['q_radiation_out']] colors = ['gold', 'orange', 'lightblue', 'lightcoral']
bars = plt.bar(heat_components, heat_values, color=colors, alpha=0.8) plt.axhline(y=0, color='black', linestyle='-', alpha=0.3) plt.ylabel('Heat Flow (W)') plt.title('Heat Transfer Component Analysis') plt.xticks(rotation=45) plt.grid(True, alpha=0.3, axis='y')
for bar, value in zip(bars, heat_values): plt.text(bar.get_x() + bar.get_width()/2, value + (5 if value > 0 else -15), f'{value:.0f}W', ha='center', va='bottom' if value > 0 else 'top')
ax6 = plt.subplot(2, 3, 6)
thickness_sensitivity = np.linspace(optimal_thickness*0.5, optimal_thickness*2, 50) cost_sensitivity = [] temp_sensitivity = []
for t in thickness_sensitivity: cost = optimizer.objective_function([t, optimal_emissivity]) heat_res = optimizer.calculate_heat_transfer(t, optimal_emissivity) cost_sensitivity.append(cost if cost < 1e9 else np.nan) temp_sensitivity.append(heat_res['T_electronics'])
plt.plot([t*1000 for t in thickness_sensitivity], cost_sensitivity, 'b-', linewidth=2, label='Cost') plt.axvline(optimal_thickness*1000, color='red', linestyle='--', alpha=0.7, label='Optimal') plt.xlabel('MLI Thickness (mm)') plt.ylabel('Total Cost ($)', color='blue') plt.title('Design Sensitivity Analysis') plt.grid(True, alpha=0.3)
ax6_twin = ax6.twinx() ax6_twin.plot([t*1000 for t in thickness_sensitivity], [t-273 for t in temp_sensitivity], 'g-', linewidth=2, label='Temperature') ax6_twin.set_ylabel('Temperature (°C)', color='green') ax6_twin.axhline(optimizer.T_min_electronics-273, color='orange', linestyle=':', alpha=0.5) ax6_twin.axhline(optimizer.T_max_electronics-273, color='orange', linestyle=':', alpha=0.5)
plt.tight_layout() plt.suptitle('SPACECRAFT THERMAL DESIGN OPTIMIZATION ANALYSIS', fontsize=16, fontweight='bold', y=0.98) plt.show()
print(f"\n📈 DESIGN SPACE ANALYSIS:") print(f" Design Space Explored: {len(thickness_range)} × {len(emissivity_range)} = {len(thickness_range)*len(emissivity_range)} combinations") print(f" Feasible Designs: {np.sum(np.isfinite(cost_matrix))}") print(f" Cost Range: ${np.nanmin(cost_matrix):,.0f} - ${np.nanmax(cost_matrix):,.0f}") print(f" Temperature Range: {np.nanmin(temp_matrix):.1f}K - {np.nanmax(temp_matrix):.1f}K") print(f" Mass Range: {np.nanmin(mass_matrix):.2f}kg - {np.nanmax(mass_matrix):.2f}kg")
print(f"\n🎯 OPTIMIZATION CONVERGENCE:") print(f" Optimization Success: {'✅ YES' if result.success else '❌ NO'}") print(f" Function Evaluations: {result.nfev}") print(f" Final Message: {result.message}")
|