AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編④

9月6日の記事にて学習済みアルゴリズムをACKTRにかえてビットコインの学習済みモデルを10種類作成しました。

今回はそのうちの2番目の学習済みモデルに対して、30回連続で投資検証を行います。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

前回とは違って、検証データには学習データを100日分移動したものを使用します。

56行目で、検証データの位置を100日分後ろに移動しています。

  • 学習アルゴリズム
    ACKTR

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

  • 検証データ
    [2017-10-24 ~ 2018-08-20] 1日足データ

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i, window_size):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
#model = PPO2('MlpPolicy', env, verbose=1)
model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
#model = PPO2.load('trading_model{}'.format(i))
model = ACKTR.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
#env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env = gym.make('forex-v0', frame_bound=(idx1+100, idx2+100), window_size=window_size)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
#plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

#with open('C:/Util/anaconda3/envs/openai_gym/lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
# lines = f.readlines()
# s1 = lines[idx1].split(',')[0]
# s2 = lines[idx2-1].split(',')[0]
# #print(s1,s2, (idx2 - idx1))
#
# s3 = lines[idx2].split(',')[0]
# s4 = lines[idx2+span].split(',')[0]
# #print(s3,s4, (idx2+span - idx2))

labels = []
means = []

for i in range(50):
labels.append('{}'.format(i))
simulation(1, 50)

x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

#plt.show()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))

実行結果

実行結果は次のようになりました。

実行結果


安定して好成績を残しているようです、26回目あたりで多少成績が落ちていますが誤差の範囲だと思われます。

もしかしてACKTRだと安定した成績がだせるようになるということでしょうか。

PPO2での検証ではだいぶばらつきがあって使い物にはならなそうだったんですが。。

次回は検証データを200日分移動して同じ30回検証を行ってみたいと思います。

AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編③

9月6日の記事にて学習済みアルゴリズムをACKTRにかえてビットコインの学習済みモデルを10種類作成しました。

今回はそのうちの2番目の学習済みモデルに対して、30回連続で投資結果を検証していきます。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

前回と同じく、学習データと検証データは同じものを使いました。

90行目で2番目の学習済みモデルを指定しています。

  • 学習アルゴリズム
    ACKTR

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

  • 検証データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i, window_size):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
#model = PPO2('MlpPolicy', env, verbose=1)
model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
#model = PPO2.load('trading_model{}'.format(i))
model = ACKTR.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
#env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
#plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

#with open('C:/Util/anaconda3/envs/openai_gym/lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
# lines = f.readlines()
# s1 = lines[idx1].split(',')[0]
# s2 = lines[idx2-1].split(',')[0]
# #print(s1,s2, (idx2 - idx1))
#
# s3 = lines[idx2].split(',')[0]
# s4 = lines[idx2+span].split(',')[0]
# #print(s3,s4, (idx2+span - idx2))

labels = []
means = []

for i in range(50):
labels.append('{}'.format(i))
simulation(0, 50)

x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

#plt.show()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))

実行結果

実行結果は次のようになりました。

実行結果


・・・あれ?ほとんど・・・というか30回全く同じ結果になっているように見えます。

学習時のデータと検証データが同じだと意味はないのでしょうか。

次回は、今回と同じ学習済みモデルをつかって学習データとは違う検証データで30回検証を行ってみたいと思います。

AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編②

前回、学習済みアルゴリズムをACKTRにかえてビットコインの学習済みモデルを10種類作成しました。

今回はそのうちの1つに関して、30回連続で投資結果を検証していきます。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

前回と同じく、学習データと検証データは同じものを使いました。ずるいとは思いますがこれで十分な結果がでなければ今後検証する意味もありませんので。。。

  • 学習アルゴリズム
    ACKTR

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

  • 検証データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i, window_size):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
#model = PPO2('MlpPolicy', env, verbose=1)
model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
#model = PPO2.load('trading_model{}'.format(i))
model = ACKTR.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
#env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
#plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

#with open('C:/Util/anaconda3/envs/openai_gym/lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
# lines = f.readlines()
# s1 = lines[idx1].split(',')[0]
# s2 = lines[idx2-1].split(',')[0]
# #print(s1,s2, (idx2 - idx1))
#
# s3 = lines[idx2].split(',')[0]
# s4 = lines[idx2+span].split(',')[0]
# #print(s3,s4, (idx2+span - idx2))

labels = []
means = []

for i in range(50):
labels.append('{}'.format(i))
simulation(0, 50)

x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

#plt.show()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))

実行結果

実行結果は次のようになりました。

実行結果


ほとんど同じ結果がでていますが、8回目の検証あたりでちょっと成績が落ちています。

これまでの検証で分かっていましたが、同じ学習済みモデルかつ同じ条件(データ)で実行しても、結果が変わることがあるんですね。

ただPPO2で動作確認していた時よりも、結果が安定しているのでもっとACKTRでの学習ずみモデルを検証していきたいと思います。

AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編①

これまで学習アルゴリズムとしてPPO2を使っていましたが、今回からACKTRを使ってみます。

ACKTR は TPROとActor-Criticを組み合わせた学習法です。

  • TPRO(Trust Region Policy Optimization)
    高い報酬が得られる行動を優先し、低い報酬しか得られない行動を避けるように方策を最適化する学習アルゴリズム VPG(Vanilla Policy Gradient) を、学習が安定するように改良した学習法。
  • Actor-Critic
    「方策」と「価値関数」の両方を利用した学習法。
    「方策」は行動選択に用いられるため Actor と呼ばれ、「価値関数」を予測する部分はActorが選択した行動を批判するため Critic と呼ばれています。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

今回は学習データと検証データの期間を指定しています。さすがに同じ期間であればそれなりの結果になるかという狙いです。

  • 学習アルゴリズム
    ACKTR

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

  • 検証データ
    [2017-07-14 ~ 2018-05-12] 1日足データ

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

def simulation(i, window_size):
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
#model = PPO2('MlpPolicy', env, verbose=1)
model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
# model = PPO2.load('trading_model')
# model = ACKTR.load('trading_model')

# モデルの学習
model.learn(total_timesteps=128000)

# モデルの保存
model.save('trading_model{}'.format(i))

# モデルのテスト
#env = gym.make('forex-v0', frame_bound=(idx2, idx2 + span), window_size=window_size)
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=window_size)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info)
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
print(s3,s4, (idx2+span - idx2))

for i in range(10):
simulation(i, 50)

simulation関数 の第2引数に 参照する直前データ数 を指定できるようにしています。

実行結果

実行結果は次のようになりました。

[コンソール出力]

1
2
3
4
5
6
7
8
9
10
info: {'total_reward': 52039260000.0, 'total_profit': 14.47817840056156, 'position': 1}
info: {'total_reward': 43732960000.0, 'total_profit': 9.583795335125448, 'position': 1}
info: {'total_reward': 549600000.0, 'total_profit': 0.47190877347820903, 'position': 0}
info: {'total_reward': 42343420000.0, 'total_profit': 4.914901478774299, 'position': 1}
info: {'total_reward': 45688700000.0, 'total_profit': 9.837992185613668, 'position': 1}
info: {'total_reward': 31742480000.0, 'total_profit': 2.9707574425845267, 'position': 1}
info: {'total_reward': 39540980000.0, 'total_profit': 7.194179491992542, 'position': 1}
info: {'total_reward': 37024600000.0, 'total_profit': 5.091570695662939, 'position': 1}
info: {'total_reward': 47806280000.0, 'total_profit': 12.566409350123624, 'position': 1}
info: {'total_reward': 7211600000.0, 'total_profit': 1.3761519803166984, 'position': 0}

実行結果(1回目)
実行結果(2回目)
実行結果(3回目)
実行結果(4回目)
実行結果(5回目)
実行結果(6回目)
実行結果(7回目)
実行結果(8回目)
実行結果(9回目)
実行結果(10回目)

上記のトータル報酬を表にまとめてみます。

No.トータル報酬(今回)
52,039,260,000円
43,732,960,000円
549,600,000円
42,343,420,000円
45,688,700,000円
31,742,480,000円
39,540,980,000円
37,024,600,000円
47,806,280,000円
7,211,600,000円

さすがに学習データと検証データ同じであれば、全勝できますね。

といいますか、これで負け越したら「なにを学習しているんだ??」ということになりますからね。

今後は今回学習したモデルをいろいろなパターンの検証データで投資成績を評価していきます。

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑬

今回は10種類の学習済みモデルのうち、以前の検証で2勝4敗だった負け越し気味の学習済みモデルの2つめを検証します。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(6)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの⑦(2勝4敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


今回の2勝4敗モデルも前回のモデルと同じく、悪くない結果となりました。

たまたま前回の検証では偏った結果となっていただけでしょうか・・・というかたった6回の検証では十分な検証ではなかっただけですね。

今回の検証で10種類の学習済みモデルに対して、すべて「同一期間での30回検証」が終了しました。

学習済みモデルの検証では、とにかくいろいろなデータで何回も検証することが重要だと痛感しました。

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑫

今回は10種類の学習済みモデルのうち、以前の検証で2勝4敗だった負け越し気味の学習済みモデルを検証します。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(2)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの③(2勝4敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


思ったより好成績な結果となりました。これまででベスト3にはいるのではないでしょうか。

やはり検証回数を増やすのはとても大事だと感じます。

投資成績をY軸、検証データの種別をX軸、検証回数をZ軸にした3次元グラフにすると検証結果が見やすくなるかもしれません。今後の課題とします。

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑪

今回は10種類の学習済みモデルのうち、以前の検証で3勝3敗だったイーブンな学習モデルを検証していきます。

3勝3敗モデルの2つ目です。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(9)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの⑩(3勝3敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


やや勝ち越しているように見えます。19回目の大きな負け越しさえなければ、かなり優秀な投資成績だったのに・・・残念です。
でも単純に勝ち負けの数だけをカウントすると、やはりイーブンな学習済みモデルだということになってしまいそうですね。

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑩

今回は10種類の学習済みモデルのうち、以前の検証で3勝3敗だったイーブンな学習モデルを検証していきます。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(7)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの⑧(3勝3敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


うーん、微妙ですがやっぱりイーブンな結果でしょうか。

今回は以前の検証結果と同様にイーブンな学習済みモデルだったことを検証できました。・・・・たまたまだと思いますが (;^ω^)

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑨

今回は10種類の学習済みモデルのうち、以前の検証で0勝6敗だったダメダメな学習モデルを検証していきます。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(3)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの④(0勝6敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


意外と負け先行とはなりませんでした。トータルイーブンくらいの結果でしょうか。

ただ勝ちも負けもしない学習済みモデルでは全然意味がないのですが。。。

AnyTrading - ビットコイン投資を強化学習で実行 迷走編⑧

現在検証中の10種類の学習済みモデルですが、よく見たら3つの学習済みモデルの検証結果が4勝2敗でした。

これまでそのうちの2種類で30回検証を行ったので、今回は最後の1つの4勝2敗学習済みモデルの検証となります。

強化学習のパラメータ

強化学習時のパラメータと学習用・検証用データスパンは下記の通りです。

  • 学習アルゴリズム
    PPO2

  • 参照する直前データ数
    50

  • 学習データ
    [2017-07-13 ~ 2018-05-11] 1日足データ

  • 検証データ
    [2019-09-23 ~ 2020-07-19] 1日足データ

ソース

1つの学習済みモデルを使い、同じデータでの検証を30回行い、トータル収益を棒グラフにするコードは以下の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# [20] 2020-06-28 10:00
idx1 = 50
#
idx2 = 350
# データ数
span = idx2 - idx1

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=20)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
model = PPO2.load('trading_model{}'.format(i))

# モデルの学習
#model.learn(total_timesteps=128000)

# モデルの保存
#model.save('trading_model{}'.format(i))

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx2+500, idx2 + span+500), window_size=20)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()
plt.savefig('trading{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now()))
#plt.show()

with open('C:/Util/Anaconda3/Lib/site-packages/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv', 'r') as f:
lines = f.readlines()
s1 = lines[idx1].split(',')[0]
s2 = lines[idx2-1].split(',')[0]
#print(s1,s2, (idx2 - idx1))

s3 = lines[idx2].split(',')[0]
s4 = lines[idx2+span].split(',')[0]
#print(s3,s4, (idx2+span - idx2))

#for i in range(10):
# simulation(i)
#labels = ['label1', 'label2', 'label3', 'label4', 'label5']
#means = [20, 34, 30, 35, 27]
labels = []
means = []

for i in range(30):
labels.append('{}'.format(i))
simulation(4)


x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.show()

92行目で、学習済みモデルの⑤(4勝2敗のもの)を指定しています。

実行結果

実行結果は次のようになりました。

実行結果


かなり負け筋の学習済みモデルとなりました。ここまで負け越した結果がでると分かりやすくて逆にいいと感じます。

ここ3回で4勝2敗モデル3種類を検証してきましたが、次のような総評となりました。

  • 学習済みモデル①
    かなりの好成績で実運用でも検証してみたいほど。
  • 学習済みモデル②
    勝ってるのか負けてるのか判断しにくいモデル。ただただイーブンの結果となった。
  • 学習済みモデル⑤
    明らかにマイナス収益先行型。ダメダメモデル。

4勝2敗となったのは期間を少しずつシフトした結果ですが、今回のように同じデータで30回検証した結果とは全然違った投資結果となりました。

強化学習って奥が深いです・・・・というよりこの検証方法が正しいのか、はたまたその前の学習方法があっているのか・・・自信がありません。

迷ってても仕方ないので、いろいろな強化学習を毎日実践していきます!

それで何かに届かなかった領域にたどり着けたら嬉しいんですけどね。。。