1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
| 10/02/2021 06:53:19 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False 10/02/2021 06:53:19 - INFO - __main__ - Training/evaluation parameters TrainingArguments(output_dir=output/, overwrite_output_dir=True, do_train=True, do_eval=True, do_predict=False, evaluation_strategy=IntervalStrategy.NO, prediction_loss_only=False, per_device_train_batch_size=32, per_device_eval_batch_size=8, gradient_accumulation_steps=1, eval_accumulation_steps=None, learning_rate=2e-05, weight_decay=0.0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=10.0, max_steps=-1, lr_scheduler_type=SchedulerType.LINEAR, warmup_ratio=0.0, warmup_steps=0, logging_dir=runs/Oct02_06-53-19_e352111af80c, logging_strategy=IntervalStrategy.STEPS, logging_first_step=False, logging_steps=100, save_strategy=IntervalStrategy.STEPS, save_steps=500, save_total_limit=None, no_cuda=False, seed=42, fp16=False, fp16_opt_level=O1, fp16_backend=auto, fp16_full_eval=False, local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, debug=False, dataloader_drop_last=False, eval_steps=100, dataloader_num_workers=0, past_index=-1, run_name=output/, disable_tqdm=False, remove_unused_columns=True, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=None, ignore_data_skip=False, sharded_ddp=[], deepspeed=None, label_smoothing_factor=0.0, adafactor=False, group_by_length=False, report_to=['tensorboard'], ddp_find_unused_parameters=None, dataloader_pin_memory=True, skip_memory_metrics=False, _n_gpu=1) 10/02/2021 06:53:19 - INFO - __main__ - load a local file for train: train.csv 10/02/2021 06:53:19 - INFO - __main__ - load a local file for validation: dev.csv Downloading: 5.33kB [00:00, 4.14MB/s] Using custom data configuration default Downloading and preparing dataset csv/default-3977538288dff7b4 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/csv/default-3977538288dff7b4/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2... Dataset csv downloaded and prepared to /root/.cache/huggingface/datasets/csv/default-3977538288dff7b4/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2. Subsequent calls will reuse this data. [INFO|file_utils.py:1386] 2021-10-02 06:53:20,548 >> https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json not found in cache or force_download set to True, downloading to /root/.cache/huggingface/transformers/tmpx2iuwgdb Downloading: 100% 479/479 [00:00<00:00, 423kB/s] [INFO|file_utils.py:1390] 2021-10-02 06:53:20,673 >> storing https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json in cache at /root/.cache/huggingface/transformers/573af37b6c39d672f2df687c06ad7d556476cbe43e5bf7771097187c45a3e7bf.abeb707b5d79387dd462e8bfb724637d856e98434b6931c769b8716c6f287258 [INFO|file_utils.py:1393] 2021-10-02 06:53:20,673 >> creating metadata file for /root/.cache/huggingface/transformers/573af37b6c39d672f2df687c06ad7d556476cbe43e5bf7771097187c45a3e7bf.abeb707b5d79387dd462e8bfb724637d856e98434b6931c769b8716c6f287258 [INFO|configuration_utils.py:463] 2021-10-02 06:53:20,674 >> loading configuration file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json from cache at /root/.cache/huggingface/transformers/573af37b6c39d672f2df687c06ad7d556476cbe43e5bf7771097187c45a3e7bf.abeb707b5d79387dd462e8bfb724637d856e98434b6931c769b8716c6f287258 [INFO|configuration_utils.py:499] 2021-10-02 06:53:20,674 >> Model config BertConfig { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "tokenizer_class": "BertJapaneseTokenizer", "transformers_version": "4.4.2", "type_vocab_size": 2, "use_cache": true, "vocab_size": 32000 }
[INFO|configuration_utils.py:463] 2021-10-02 06:53:20,802 >> loading configuration file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json from cache at /root/.cache/huggingface/transformers/573af37b6c39d672f2df687c06ad7d556476cbe43e5bf7771097187c45a3e7bf.abeb707b5d79387dd462e8bfb724637d856e98434b6931c769b8716c6f287258 [INFO|configuration_utils.py:499] 2021-10-02 06:53:20,803 >> Model config BertConfig { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "tokenizer_class": "BertJapaneseTokenizer", "transformers_version": "4.4.2", "type_vocab_size": 2, "use_cache": true, "vocab_size": 32000 }
[INFO|file_utils.py:1386] 2021-10-02 06:53:20,926 >> https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt not found in cache or force_download set to True, downloading to /root/.cache/huggingface/transformers/tmpjq6xsip6 Downloading: 100% 258k/258k [00:00<00:00, 3.12MB/s] [INFO|file_utils.py:1390] 2021-10-02 06:53:21,164 >> storing https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt in cache at /root/.cache/huggingface/transformers/15164357d71cd32532e56c1d7c2757141326ae17c53e2277bc417cc7c21da6ea.a7378a0cbee5cff668832a776d72b97a25479604fe9564d5595897f75049e7f4 [INFO|file_utils.py:1393] 2021-10-02 06:53:21,164 >> creating metadata file for /root/.cache/huggingface/transformers/15164357d71cd32532e56c1d7c2757141326ae17c53e2277bc417cc7c21da6ea.a7378a0cbee5cff668832a776d72b97a25479604fe9564d5595897f75049e7f4 [INFO|file_utils.py:1386] 2021-10-02 06:53:21,533 >> https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/tokenizer_config.json not found in cache or force_download set to True, downloading to /root/.cache/huggingface/transformers/tmpvwenqgcb Downloading: 100% 110/110 [00:00<00:00, 105kB/s] [INFO|file_utils.py:1390] 2021-10-02 06:53:21,664 >> storing https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/tokenizer_config.json in cache at /root/.cache/huggingface/transformers/0e46f722799f19c3f0c53172545108a4b31847d3b9a2d5b100759f6673bd667b.08ae4e4044742b9cc7172698caf1da2524f5597ff8cf848114dd0b730cc44bdc [INFO|file_utils.py:1393] 2021-10-02 06:53:21,664 >> creating metadata file for /root/.cache/huggingface/transformers/0e46f722799f19c3f0c53172545108a4b31847d3b9a2d5b100759f6673bd667b.08ae4e4044742b9cc7172698caf1da2524f5597ff8cf848114dd0b730cc44bdc [INFO|tokenization_utils_base.py:1702] 2021-10-02 06:53:21,789 >> loading file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt from cache at /root/.cache/huggingface/transformers/15164357d71cd32532e56c1d7c2757141326ae17c53e2277bc417cc7c21da6ea.a7378a0cbee5cff668832a776d72b97a25479604fe9564d5595897f75049e7f4 [INFO|tokenization_utils_base.py:1702] 2021-10-02 06:53:21,790 >> loading file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/added_tokens.json from cache at None [INFO|tokenization_utils_base.py:1702] 2021-10-02 06:53:21,790 >> loading file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/special_tokens_map.json from cache at None [INFO|tokenization_utils_base.py:1702] 2021-10-02 06:53:21,790 >> loading file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/tokenizer_config.json from cache at /root/.cache/huggingface/transformers/0e46f722799f19c3f0c53172545108a4b31847d3b9a2d5b100759f6673bd667b.08ae4e4044742b9cc7172698caf1da2524f5597ff8cf848114dd0b730cc44bdc [INFO|tokenization_utils_base.py:1702] 2021-10-02 06:53:21,790 >> loading file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/tokenizer.json from cache at None [INFO|file_utils.py:1386] 2021-10-02 06:53:21,968 >> https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/pytorch_model.bin not found in cache or force_download set to True, downloading to /root/.cache/huggingface/transformers/tmpa845b2k1 Downloading: 100% 445M/445M [00:12<00:00, 36.5MB/s] [INFO|file_utils.py:1390] 2021-10-02 06:53:34,325 >> storing https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/pytorch_model.bin in cache at /root/.cache/huggingface/transformers/cabd9bbd81093f4c494a02e34eb57e405b7564db216404108c8e8caf10ede4fa.464b54997e35e3cc3223ba6d7f0abdaeb7be5b7648f275f57d839ee0f95611fb [INFO|file_utils.py:1393] 2021-10-02 06:53:34,325 >> creating metadata file for /root/.cache/huggingface/transformers/cabd9bbd81093f4c494a02e34eb57e405b7564db216404108c8e8caf10ede4fa.464b54997e35e3cc3223ba6d7f0abdaeb7be5b7648f275f57d839ee0f95611fb [INFO|modeling_utils.py:1051] 2021-10-02 06:53:34,325 >> loading weights file https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/pytorch_model.bin from cache at /root/.cache/huggingface/transformers/cabd9bbd81093f4c494a02e34eb57e405b7564db216404108c8e8caf10ede4fa.464b54997e35e3cc3223ba6d7f0abdaeb7be5b7648f275f57d839ee0f95611fb [WARNING|modeling_utils.py:1159] 2021-10-02 06:53:37,781 >> Some weights of the model checkpoint at cl-tohoku/bert-base-japanese-whole-word-masking were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias'] - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). [WARNING|modeling_utils.py:1170] 2021-10-02 06:53:37,781 >> Some weights of BertForSequenceClassification were not initialized from the model checkpoint at cl-tohoku/bert-base-japanese-whole-word-masking and are newly initialized: ['classifier.weight', 'classifier.bias'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. 100% 3/3 [00:00<00:00, 6.14ba/s] 100% 1/1 [00:00<00:00, 7.77ba/s] 10/02/2021 06:53:39 - INFO - __main__ - Sample 456 of the training set: {'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'input_ids': [2, 9680, 21436, 28589, 472, 19366, 9594, 1754, 35, 6006, 28645, 10622, 14, 14930, 25910, 18920, 3723, 28, 6, 1532, 35, 12590, 9, 36, 5342, 16, 80, 38, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'label': 1, 'sentence': '【Sports Watch】妻・SHIHOが凄艶ヌード披露も、夫・秋山は「聞いてない」', 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}. 10/02/2021 06:53:39 - INFO - __main__ - Sample 102 of the training set: {'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'input_ids': [2, 63, 2000, 623, 6234, 7875, 29182, 17489, 6848, 65, 5, 612, 11, 2461, 104, 14, 16089, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'label': 2, 'sentence': '『劇場版 FAIRY TAIL』の一部を原作者が暴露', 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}. 10/02/2021 06:53:39 - INFO - __main__ - Sample 1126 of the training set: {'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'input_ids': [2, 4623, 2710, 5, 3245, 21324, 237, 4158, 2720, 14, 690, 315, 40, 398, 971, 19, 126, 5, 28404, 11, 1174, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'label': 0, 'sentence': '進む資料のデジタルアーカイブ化\u3000国会図書館が明治時代から昭和27年までの官報を公開', 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}. [INFO|trainer.py:483] 2021-10-02 06:53:48,144 >> The following columns in the training set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: sentence. [INFO|trainer.py:483] 2021-10-02 06:53:48,145 >> The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: sentence. [INFO|trainer.py:946] 2021-10-02 06:53:48,352 >> ***** Running training ***** [INFO|trainer.py:947] 2021-10-02 06:53:48,352 >> Num examples = 2114 [INFO|trainer.py:948] 2021-10-02 06:53:48,352 >> Num Epochs = 10 [INFO|trainer.py:949] 2021-10-02 06:53:48,352 >> Instantaneous batch size per device = 32 [INFO|trainer.py:950] 2021-10-02 06:53:48,353 >> Total train batch size (w. parallel, distributed & accumulation) = 32 [INFO|trainer.py:951] 2021-10-02 06:53:48,353 >> Gradient Accumulation steps = 1 [INFO|trainer.py:952] 2021-10-02 06:53:48,353 >> Total optimization steps = 670 {'loss': 0.2883, 'learning_rate': 1.701492537313433e-05, 'epoch': 1.49} {'loss': 0.0415, 'learning_rate': 1.4029850746268658e-05, 'epoch': 2.99} {'loss': 0.0058, 'learning_rate': 1.1044776119402986e-05, 'epoch': 4.48} {'loss': 0.0024, 'learning_rate': 8.059701492537314e-06, 'epoch': 5.97} {'loss': 0.0019, 'learning_rate': 5.074626865671642e-06, 'epoch': 7.46} 75% 500/670 [09:48<03:22, 1.19s/it][INFO|trainer.py:1558] 2021-10-02 07:03:37,211 >> Saving model checkpoint to output/checkpoint-500 [INFO|configuration_utils.py:314] 2021-10-02 07:03:37,212 >> Configuration saved in output/checkpoint-500/config.json [INFO|modeling_utils.py:837] 2021-10-02 07:03:38,494 >> Model weights saved in output/checkpoint-500/pytorch_model.bin [INFO|tokenization_utils_base.py:1896] 2021-10-02 07:03:38,495 >> tokenizer config file saved in output/checkpoint-500/tokenizer_config.json [INFO|tokenization_utils_base.py:1902] 2021-10-02 07:03:38,495 >> Special tokens file saved in output/checkpoint-500/special_tokens_map.json {'loss': 0.0015, 'learning_rate': 2.08955223880597e-06, 'epoch': 8.96} 100% 670/670 [13:13<00:00, 1.13it/s][INFO|trainer.py:1129] 2021-10-02 07:07:01,701 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
{'train_runtime': 793.3481, 'train_samples_per_second': 0.845, 'epoch': 10.0} 100% 670/670 [13:13<00:00, 1.18s/it] [INFO|trainer.py:1558] 2021-10-02 07:07:02,143 >> Saving model checkpoint to output/ [INFO|configuration_utils.py:314] 2021-10-02 07:07:02,144 >> Configuration saved in output/config.json [INFO|modeling_utils.py:837] 2021-10-02 07:07:03,410 >> Model weights saved in output/pytorch_model.bin [INFO|tokenization_utils_base.py:1896] 2021-10-02 07:07:03,411 >> tokenizer config file saved in output/tokenizer_config.json [INFO|tokenization_utils_base.py:1902] 2021-10-02 07:07:03,411 >> Special tokens file saved in output/special_tokens_map.json [INFO|trainer_pt_utils.py:656] 2021-10-02 07:07:03,442 >> ***** train metrics ***** [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,442 >> epoch = 10.0 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,442 >> init_mem_cpu_alloc_delta = 1MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,442 >> init_mem_cpu_peaked_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,442 >> init_mem_gpu_alloc_delta = 422MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,442 >> init_mem_gpu_peaked_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_mem_cpu_alloc_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_mem_cpu_peaked_delta = 94MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_mem_gpu_alloc_delta = 1324MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_mem_gpu_peaked_delta = 3394MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_runtime = 793.3481 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_samples = 2114 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:03,443 >> train_samples_per_second = 0.845 10/02/2021 07:07:03 - INFO - __main__ - *** Evaluate *** [INFO|trainer.py:483] 2021-10-02 07:07:03,557 >> The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: sentence. [INFO|trainer.py:1775] 2021-10-02 07:07:03,559 >> ***** Running Evaluation ***** [INFO|trainer.py:1776] 2021-10-02 07:07:03,559 >> Num examples = 529 [INFO|trainer.py:1777] 2021-10-02 07:07:03,559 >> Batch size = 8 100% 67/67 [00:07<00:00, 9.09it/s] [INFO|trainer_pt_utils.py:656] 2021-10-02 07:07:11,070 >> ***** eval metrics ***** [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,070 >> epoch = 10.0 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,070 >> eval_accuracy = 0.9698 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,070 >> eval_loss = 0.1554 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,070 >> eval_mem_cpu_alloc_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_mem_cpu_peaked_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_mem_gpu_alloc_delta = 0MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_mem_gpu_peaked_delta = 33MB [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_runtime = 7.3979 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_samples = 529 [INFO|trainer_pt_utils.py:661] 2021-10-02 07:07:11,071 >> eval_samples_per_second = 71.507 CPU times: user 6.09 s, sys: 875 ms, total: 6.96 s Wall time: 14min
|