1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
| def my_agent(obs, conf):
def evaluate_cell(cell): """ evaluate qualities of the cell """ # セルの品質を評価。パターンを取得して、そのセルのポイント付けをしているみたい。 cell = get_patterns(cell) cell = calculate_points(cell) for i in range(1, conf.rows): cell = explore_cell_above(cell, i) return cell
def get_patterns(cell): """ get swarm and opponent's patterns of each axis of the cell """ # 群れと対戦相手のセルの各軸パターンを取得。 ne = get_pattern(cell["x"], lambda z : z + 1, cell["y"], lambda z : z - 1, conf.inarow) sw = get_pattern(cell["x"], lambda z : z - 1, cell["y"], lambda z : z + 1, conf.inarow)[::-1] cell["swarm_patterns"]["NE_SW"] = sw + [{"mark": swarm_mark}] + ne cell["opp_patterns"]["NE_SW"] = sw + [{"mark": opp_mark}] + ne e = get_pattern(cell["x"], lambda z : z + 1, cell["y"], lambda z : z, conf.inarow) w = get_pattern(cell["x"], lambda z : z - 1, cell["y"], lambda z : z, conf.inarow)[::-1] cell["swarm_patterns"]["E_W"] = w + [{"mark": swarm_mark}] + e cell["opp_patterns"]["E_W"] = w + [{"mark": opp_mark}] + e se = get_pattern(cell["x"], lambda z : z + 1, cell["y"], lambda z : z + 1, conf.inarow) nw = get_pattern(cell["x"], lambda z : z - 1, cell["y"], lambda z : z - 1, conf.inarow)[::-1] cell["swarm_patterns"]["SE_NW"] = nw + [{"mark": swarm_mark}] + se cell["opp_patterns"]["SE_NW"] = nw + [{"mark": opp_mark}] + se s = get_pattern(cell["x"], lambda z : z, cell["y"], lambda z : z + 1, conf.inarow) n = get_pattern(cell["x"], lambda z : z, cell["y"], lambda z : z - 1, conf.inarow)[::-1] cell["swarm_patterns"]["S_N"] = n + [{"mark": swarm_mark}] + s cell["opp_patterns"]["S_N"] = n + [{"mark": opp_mark}] + s return cell
def get_pattern(x, x_fun, y, y_fun, cells_remained): """ get pattern of marks in direction """ # ある方向へのマークパターンを取得 pattern = [] x = x_fun(x) y = y_fun(y) # if cell is inside swarm's borders # セルが群れの境界内にある場合 if y >= 0 and y < conf.rows and x >= 0 and x < conf.columns: pattern.append({ "mark": swarm[x][y]["mark"] }) # amount of cells to explore in this direction # ある方向へのセルの総数 cells_remained -= 1 if cells_remained > 1: pattern.extend(get_pattern(x, x_fun, y, y_fun, cells_remained)) return pattern
def calculate_points(cell): """ calculate amounts of swarm's and opponent's correct patterns and add them to cell's points """ for i in range(conf.inarow - 1): # inarow = amount of marks in pattern to consider that pattern as correct inarow = conf.inarow - i swarm_points = 0 opp_points = 0 # calculate swarm's points and depth # 群れのポイントと深さを計算 swarm_points = evaluate_pattern(swarm_points, cell["swarm_patterns"]["E_W"], swarm_mark, inarow) swarm_points = evaluate_pattern(swarm_points, cell["swarm_patterns"]["NE_SW"], swarm_mark, inarow) swarm_points = evaluate_pattern(swarm_points, cell["swarm_patterns"]["SE_NW"], swarm_mark, inarow) swarm_points = evaluate_pattern(swarm_points, cell["swarm_patterns"]["S_N"], swarm_mark, inarow) # calculate opponent's points and depth # 対戦相手のポイントと深さを計算 opp_points = evaluate_pattern(opp_points, cell["opp_patterns"]["E_W"], opp_mark, inarow) opp_points = evaluate_pattern(opp_points, cell["opp_patterns"]["NE_SW"], opp_mark, inarow) opp_points = evaluate_pattern(opp_points, cell["opp_patterns"]["SE_NW"], opp_mark, inarow) opp_points = evaluate_pattern(opp_points, cell["opp_patterns"]["S_N"], opp_mark, inarow) # if more than one mark required for victory # 勝つために1つ以上のマークが必要かどうか if i > 0: # swarm_mark or opp_mark priority # 自分のマークと対戦相手のマークの優先順位 if swarm_points > opp_points: cell["points"].append(swarm_points) cell["points"].append(opp_points) else: cell["points"].append(opp_points) cell["points"].append(swarm_points) else: cell["points"].append(swarm_points) cell["points"].append(opp_points) return cell
def evaluate_pattern(points, pattern, mark, inarow): """ get amount of points, if pattern has required amounts of marks and zeros """ # saving enough cells for required amounts of marks and zeros # マーク数と非マーク数の総数を保存する for i in range(len(pattern) - (conf.inarow - 1)): marks = 0 zeros = 0 # check part of pattern for required amounts of marks and zeros # マーク数と非マーク数の総数をチェックする for j in range(conf.inarow): if pattern[i + j]["mark"] == mark: marks += 1 elif pattern[i + j]["mark"] == 0: zeros += 1 if marks >= inarow and (marks + zeros) == conf.inarow: return points + 1 return points
def explore_cell_above(cell, i): """ add positive or negative points from cell above (if it exists) to points of current cell """ # ポジティブなポイントかネガティブなポイントを追加する if (cell["y"] - i) >= 0: cell_above = swarm[cell["x"]][cell["y"] - i] cell_above = get_patterns(cell_above) cell_above = calculate_points(cell_above) # points will be positive or negative # ポイントがポジティブかネガティブか n = -1 if i & 1 else 1 # if it is first cell above # 最初のセルの上かどうか if i == 1: # add first 4 points of cell_above["points"] to cell["points"] # 最初の4ポイントを追加する cell["points"][2:2] = [n * cell_above["points"][1], n * cell_above["points"][0]] # if it is not potential "seven" pattern in cell and cell_above has more points if abs(cell["points"][4]) < 2 and abs(cell["points"][4]) < cell_above["points"][2]: cell["points"][4:4] = [n * cell_above["points"][2]] # if it is not potential "seven" pattern in cell and cell_above has more points if abs(cell["points"][5]) < 2 and abs(cell["points"][5]) < cell_above["points"][3]: cell["points"][5:5] = [n * cell_above["points"][3]] else: cell["points"][7:7] = [n * cell_above["points"][3]] else: cell["points"][6:6] = [n * cell_above["points"][2], n * cell_above["points"][3]] cell["points"].append(n * cell_above["points"][4]) cell["points"].append(n * cell_above["points"][5]) else: cell["points"].extend(map(lambda z : z * n, cell_above["points"])) else: cell["points"].extend([0, 0, 0, 0, 0, 0]) return cell
def choose_best_cell(best_cell, current_cell): """ compare two cells and return the best one """ # 2つのセルを比較しベストなセルを返す if best_cell is not None: for i in range(len(best_cell["points"])): # compare amounts of points of two cells # 2つのセルの総ポイントを比較する if best_cell["points"][i] < current_cell["points"][i]: best_cell = current_cell break if best_cell["points"][i] > current_cell["points"][i]: break # if ["points"][i] of cells are equal, compare distance to swarm's center of each cell # もし["points"][i]セルが等しい場合、各セルの群れの中心への距離を比較する if best_cell["points"][i] > 0: if best_cell["distance_to_center"] > current_cell["distance_to_center"]: best_cell = current_cell break if best_cell["distance_to_center"] < current_cell["distance_to_center"]: break else: best_cell = current_cell return best_cell
############################################################################### # define swarm's and opponent's marks # 群れと対戦相手のマークを定義 swarm_mark = obs.mark opp_mark = 2 if swarm_mark == 1 else 1 # define swarm's center # 群れの中央位置を定義 swarm_center_horizontal = conf.columns // 2 swarm_center_vertical = conf.rows // 2
# define swarm as two dimensional array of cells # セルの2次元配列として群れを定義 swarm = [] for column in range(conf.columns): swarm.append([]) for row in range(conf.rows): cell = { "x": column, "y": row, "mark": obs.board[conf.columns * row + column], "swarm_patterns": {}, "opp_patterns": {}, "distance_to_center": abs(row - swarm_center_vertical) + abs(column - swarm_center_horizontal), "points": [] } swarm[column].append(cell)
best_cell = None # start searching for best_cell from swarm center # 群れの中央から最適なセル位置を検索開始 x = swarm_center_horizontal # shift to right or left from swarm center # 群れの中央から右か左にシフト shift = 0 # searching for best_cell # 最適なセル位置を検索 while x >= 0 and x < conf.columns: # find first empty cell starting from bottom of the column # カラムの底位置からマークされていない最初の位置を見つける y = conf.rows - 1 while y >= 0 and swarm[x][y]["mark"] != 0: y -= 1 # if column is not full # カラムがフルでない場合 if y >= 0: # current cell evaluates its own qualities # 現在のセルの評価 current_cell = evaluate_cell(swarm[x][y]) # current cell compares itself against best cell # 現在のセルと最適なセル位置を比較 best_cell = choose_best_cell(best_cell, current_cell)
# shift x to right or left from swarm center # 中央から右か左にずらす if shift >= 0: shift += 1 shift *= -1 x = swarm_center_horizontal + shift
# return index of the best cell column # 最適なカラム位置のインデックスを返す return best_cell["x"]
|