カスタムGym環境作成(20) - 広げたマップを強化学習で攻略(報酬を改善3)

前回、広げたマップに対してエージェントがスタート位置に移動したときのマイナス報酬を増やしてみましたが、ゴールにたどり着くことができませんでした。

[広くしたマップイメージ]

今回は再度報酬を見直して、攻略を目指します。

最終報酬がプラスにならない問題の対策

これまでの結果を見るとプラス報酬になることがほとんどありませんでした。

そこで今回はゴール時の報酬を見直してみました。

具体的にはゴール時の報酬を3000から15000に変更してみました。

理由は、最終報酬が-20000となるケースが一番悪い結果のようなので、それ以前にゴールにたどり着けば最終報酬がプラスになるのではないかと考えたからです。

修正箇所は103~104行目となります。

[ソース]

env7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# activate openai_gym
import sys

import gym
import numpy as np
import gym.spaces

class MyEnv(gym.Env):
FIELD_TYPES = [
'S', # 0: スタート
'G', # 1: ゴール
' ', # 2: 平地
'山', # 3: 山(歩けない)
'☆', # 4: プレイヤー
'三', # 5: 橋
'川', # 6: 川
'林', # 7: 林
]
MAP = np.array([
[0, 3, 3, 3, 2, 3, 7, 7, 3, 2, 2, 3],
[2, 2, 2, 2, 2, 2, 7, 3, 2, 2, 2, 2],
[3, 2, 3, 2, 3, 7, 7, 2, 2, 2, 2, 3],
[3, 2, 2, 2, 7, 7, 6, 6, 3, 3, 2, 2],
[7, 7, 3, 2, 6, 6, 6, 3, 7, 7, 3, 3],
[3, 2, 3, 2, 3, 7, 3, 1, 2, 7, 2, 2],
[3, 7, 2, 2, 3, 2, 3, 3, 3, 3, 2, 7],
[2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2],
[7, 3, 2, 7, 7, 2, 2, 2, 7, 6, 6, 7],
[2, 3, 2, 6, 6, 6, 2, 3, 2, 7, 2, 2],
[3, 3, 2, 3, 2, 3, 6, 2, 3, 2, 2, 3],
[7, 2, 2, 2, 3, 3, 6, 2, 7, 3, 2, 2],
])
MAX_STEPS = 2000

def __init__(self):
super().__init__()
# action_space, observation_space, reward_range を設定する
self.action_space = gym.spaces.Discrete(4) # 上下左右
self.observation_space = gym.spaces.Box(
low=0,
high=len(self.FIELD_TYPES),
shape=self.MAP.shape
)
self.reset()

def reset(self):
# 諸々の変数を初期化する
self.pos = self._find_pos('S')[0]
self.goal = self._find_pos('G')[0]
self.river = self._find_pos('川')
self.trees = self._find_pos('林')
self.start = self._find_pos('S')[0]
self.done = False
self.steps = 0
return self._observe()

def step(self, action):
# 1ステップ進める処理を記述。戻り値は observation, reward, done(ゲーム終了したか), info(追加の情報の辞書)
# 左上の座標を(0, 0)とする
if action == 0: # 右移動
next_pos = self.pos + [0, 1]
elif action == 1: # 左移動
next_pos = self.pos + [0, -1]
elif action == 2: # 下移動
next_pos = self.pos + [1, 0]
elif action == 3: # 上移動
next_pos = self.pos + [-1, 0]

if self._is_movable(next_pos):
self.pos = next_pos
moved = True
else:
moved = False

self.steps += 1
observation = self._observe()
reward = self._get_reward(self.pos, moved)
self.done = self._is_done()
return observation, reward, self.done, {}

def render(self, mode='console', close=False):
for row in self._observe():
for elem in row:
print(self.FIELD_TYPES[elem], end='')
print()

def _close(self):
pass

def _seed(self, seed=None):
pass

def _get_reward(self, pos, moved):
# 報酬を返す。
# - ゴールにたどり着くと 3000 ポイント
# - 川に入ったら -10 ポイント
# - 林に入ったら -3 ポイント
# - 1ステップごとに-1ポイント(できるだけ短いステップでゴールにたどり着きたい)
if (self.start == pos).all(): # スタート位置に戻ってきたときのマイナス報酬
return -10
if moved:
if (self.goal == pos).all():
#return 3000
return 15000
for x in self.river:
if (x == pos).all():
return -10
for x in self.trees:
if (x == pos).all():
return -3
return -1
else: # エージェントが動かなかった場合
return -10

def _is_movable(self, pos):
# マップの中にいるか、歩けない場所にいないか
return (
0 <= pos[0] < self.MAP.shape[0]
and 0 <= pos[1] < self.MAP.shape[1]
and self.FIELD_TYPES[self.MAP[tuple(pos)]] != '山'
)

def _observe(self):
# マップにプレイヤーの位置を重ねて返す
observation = self.MAP.copy()
observation[tuple(self.pos)] = self.FIELD_TYPES.index('☆')
return observation

def _is_done(self):
# 最大で self.MAX_STEPS まで
if (self.pos == self.goal).all():
return True
elif self.steps > self.MAX_STEPS:
return True
else:
return False

def _find_pos(self, field_type):
return np.array(list(zip(*np.where(self.MAP == self.FIELD_TYPES.index(field_type)))))

報酬を修正したこのカスタム環境に対して、前回と同じように学習率を変更しながら実行し、それぞれの最終結果と平均報酬遷移(グラフ)を確認します。

各実行結果をまとめると下記のようになりました。

[結果]

学習率 最終位置・最終報酬 平均報酬遷移
0.01
0.05
0.1
0.5
1.0

ゴールしたときの報酬を増やしたおかげで、ゴールしたときのエピソードがどこかは分かりやすくなったのですが、どの学習率でもたまにラッキーゴールをした感じで、マップを攻略した状態にはなっていません。

マップを攻略したモデルであれば、つねにプラス報酬であり続けるはずですので。。。

次回は、学習ステップ数を増やしてマップを攻略できるかどうか試したいと思います。