AnyTrading - FXトレードを強化学習で実行⑪ 参照するデータ数を変更

AnyTradingで参照すべき直前のデータ数を変更して、投資成績の変化を確認してみます。

参照する直前データ数を変更

参照すべき直前のデータ数を変更するには gym.make するときの window_size で指定します。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os, gym
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)

# 2020年1月1日最初のインデックス
idx1 = 6677691
# 2020年5月31日最後のインデックス
idx2 = 6824172
# 2020年1月1日最初から2020年5月31日最後のデータ数
span = 6824172 - 6677691

# 環境の生成
env = gym.make('forex-v0', frame_bound=(idx1 - span, idx1), window_size=100)
env = Monitor(env, log_dir, allow_early_resets=True)

# シードの指定
env.seed(0)
set_global_seeds(0)

# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])

# モデルの生成
model = PPO2('MlpPolicy', env, verbose=1)
#model = ACKTR('MlpPolicy', env, verbose=1)

# モデルの読み込み
# model = PPO2.load('trading_model')

# モデルの学習
model.learn(total_timesteps=128000)

# モデルの保存
model.save('trading_model')

# モデルのテスト
env = gym.make('forex-v0', frame_bound=(idx1, idx2), window_size=100)
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state)
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info)
break
# グラフのプロット
plt.cla()
env.render_all()
plt.show()

24行目48行目 で、参照する直前のデータを 30 から 100 に変更しています。

FXトレードを実行

上記コードを実行すると次のような結果になります。

[コンソール出力]

1
2
3
info: {'total_reward': 23400.000000005402,
'total_profit': 0.9927528929385181,
'position': 1}

実行結果

  • トータル報酬 -68300 → 23400
  • トータル収益 0.907 → 0.992

トータル報酬とトータル収益ともに大きく成績が向上しました。これだけでコロナショックを乗り切れたという事になるのでしょうか。

もう少しこのパラメータを変えることでの成績変化を検証したいと思います。