Bayesian Optimal Estimation of Life Existence Probability

Integrating Prior Knowledge with Observational Data

Introduction

Estimating the probability of life existing elsewhere in the universe is one of the most profound questions in astrobiology. Using Bayesian inference, we can optimally combine our prior beliefs with observational data to obtain a posterior probability distribution that minimizes uncertainty. In this article, we’ll explore a concrete example using the Drake Equation framework and implement a comprehensive Bayesian analysis in Python.

Problem Statement

Suppose we’re estimating the probability that a recently discovered exoplanet harbors life. We have:

  • Prior knowledge: Based on theoretical models and previous surveys, we believe the probability of life on habitable zone planets follows a Beta distribution
  • Observational data: Spectroscopic observations of the planet’s atmosphere showing biosignature gas detections
  • Goal: Compute the posterior probability distribution and quantify our uncertainty

Mathematical Framework

Bayesian Update Formula

P(θ|D)=P(D|θ)P(θ)P(D)

where:

  • θ is the probability of life existing
  • D is the observed data
  • P(θ) is the prior distribution
  • P(D|θ) is the likelihood
  • P(θ|D) is the posterior distribution

Prior Distribution

We use a Beta distribution for the prior:

P(θ)=Beta(α,β)=θα1(1θ)β1B(α,β)

Likelihood Function

For biosignature detections, we use a binomial likelihood:

P(D|θ)=(nk)θk(1θ)nk

where n is the number of observations and k is the number of positive detections.

Python Implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import beta, binom
from scipy.special import betaln
import seaborn as sns

# Set style for better visualizations
sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (12, 8)
plt.rcParams['font.size'] = 11

class BayesianLifeProbability:
"""
Bayesian estimation of life existence probability on exoplanets
"""

def __init__(self, prior_alpha, prior_beta):
"""
Initialize with prior Beta distribution parameters

Parameters:
-----------
prior_alpha : float
Alpha parameter of prior Beta distribution (successes + 1)
prior_beta : float
Beta parameter of prior Beta distribution (failures + 1)
"""
self.prior_alpha = prior_alpha
self.prior_beta = prior_beta

def prior_distribution(self, theta):
"""Calculate prior probability density"""
return beta.pdf(theta, self.prior_alpha, self.prior_beta)

def likelihood(self, theta, n_obs, n_detections):
"""
Calculate likelihood of observing n_detections in n_obs observations

Parameters:
-----------
theta : array-like
Probability values
n_obs : int
Number of observations
n_detections : int
Number of positive biosignature detections
"""
return binom.pmf(n_detections, n_obs, theta)

def posterior_distribution(self, theta, n_obs, n_detections):
"""
Calculate posterior probability density after observing data
Using conjugate prior property: Beta + Binomial = Beta
"""
post_alpha = self.prior_alpha + n_detections
post_beta = self.prior_beta + (n_obs - n_detections)
return beta.pdf(theta, post_alpha, post_beta)

def update_posterior_params(self, n_obs, n_detections):
"""Get updated posterior parameters"""
post_alpha = self.prior_alpha + n_detections
post_beta = self.prior_beta + (n_obs - n_detections)
return post_alpha, post_beta

def posterior_statistics(self, n_obs, n_detections):
"""Calculate posterior mean, mode, variance, and credible interval"""
post_alpha, post_beta = self.update_posterior_params(n_obs, n_detections)

# Mean
mean = post_alpha / (post_alpha + post_beta)

# Mode (for alpha, beta > 1)
if post_alpha > 1 and post_beta > 1:
mode = (post_alpha - 1) / (post_alpha + post_beta - 2)
else:
mode = None

# Variance
variance = (post_alpha * post_beta) / \
((post_alpha + post_beta)**2 * (post_alpha + post_beta + 1))
std = np.sqrt(variance)

# 95% Credible Interval
ci_lower = beta.ppf(0.025, post_alpha, post_beta)
ci_upper = beta.ppf(0.975, post_alpha, post_beta)

return {
'mean': mean,
'mode': mode,
'std': std,
'variance': variance,
'ci_95': (ci_lower, ci_upper)
}

def information_gain(self, n_obs, n_detections):
"""
Calculate Kullback-Leibler divergence from prior to posterior
Measures information gain from observations
"""
post_alpha, post_beta = self.update_posterior_params(n_obs, n_detections)

# KL divergence for Beta distributions
kl = betaln(self.prior_alpha, self.prior_beta) - \
betaln(post_alpha, post_beta) + \
(post_alpha - self.prior_alpha) * \
(np.euler_gamma + np.log(post_alpha + post_beta - 2) -
np.log(post_alpha - 1) if post_alpha > 1 else 0) + \
(post_beta - self.prior_beta) * \
(np.euler_gamma + np.log(post_alpha + post_beta - 2) -
np.log(post_beta - 1) if post_beta > 1 else 0)

return abs(kl)

# Example: Exoplanet biosignature detection
# Prior: Moderately skeptical (alpha=2, beta=10)
# This represents prior belief that ~16.7% of habitable zone planets have life

bayesian_model = BayesianLifeProbability(prior_alpha=2, prior_beta=10)

# Observational data: 15 observations, 5 positive biosignature detections
n_observations = 15
n_detections = 5

# Generate probability values for plotting
theta_values = np.linspace(0, 1, 1000)

# Calculate distributions
prior = bayesian_model.prior_distribution(theta_values)
likelihood = bayesian_model.likelihood(theta_values, n_observations, n_detections)
posterior = bayesian_model.posterior_distribution(theta_values, n_observations, n_detections)

# Normalize likelihood for visualization
likelihood_normalized = likelihood / np.trapz(likelihood, theta_values)

# Get posterior statistics
stats = bayesian_model.posterior_statistics(n_observations, n_detections)

# Calculate information gain
info_gain = bayesian_model.information_gain(n_observations, n_detections)

# Print results
print("="*70)
print("BAYESIAN ESTIMATION OF LIFE EXISTENCE PROBABILITY")
print("="*70)
print(f"\nPrior Distribution: Beta(α={bayesian_model.prior_alpha}, β={bayesian_model.prior_beta})")
print(f"Prior Mean: {bayesian_model.prior_alpha/(bayesian_model.prior_alpha + bayesian_model.prior_beta):.4f}")
print(f"\nObservational Data:")
print(f" - Number of observations: {n_observations}")
print(f" - Positive detections: {n_detections}")
print(f" - Detection rate: {n_detections/n_observations:.2%}")
print(f"\nPosterior Statistics:")
print(f" - Mean: {stats['mean']:.4f}")
if stats['mode']:
print(f" - Mode: {stats['mode']:.4f}")
print(f" - Standard Deviation: {stats['std']:.4f}")
print(f" - 95% Credible Interval: [{stats['ci_95'][0]:.4f}, {stats['ci_95'][1]:.4f}]")
print(f"\nInformation Gain (KL Divergence): {info_gain:.4f}")
print(f"Uncertainty Reduction: {(1 - stats['std']/np.sqrt(bayesian_model.prior_alpha * bayesian_model.prior_beta /
((bayesian_model.prior_alpha + bayesian_model.prior_beta)**2 *
(bayesian_model.prior_alpha + bayesian_model.prior_beta + 1))))*100:.2f}%")
print("="*70)

# Visualization 1: Prior, Likelihood, and Posterior
fig, axes = plt.subplots(2, 2, figsize=(15, 12))

# Plot 1: Prior Distribution
axes[0, 0].fill_between(theta_values, prior, alpha=0.6, color='blue', label='Prior')
axes[0, 0].axvline(bayesian_model.prior_alpha/(bayesian_model.prior_alpha + bayesian_model.prior_beta),
color='blue', linestyle='--', linewidth=2, label='Prior Mean')
axes[0, 0].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[0, 0].set_ylabel('Density', fontsize=12)
axes[0, 0].set_title('Prior Distribution: Beta(2, 10)', fontsize=14, fontweight='bold')
axes[0, 0].legend(fontsize=11)
axes[0, 0].grid(True, alpha=0.3)

# Plot 2: Likelihood Function
axes[0, 1].fill_between(theta_values, likelihood_normalized, alpha=0.6, color='green', label='Likelihood')
axes[0, 1].axvline(n_detections/n_observations, color='green', linestyle='--',
linewidth=2, label='MLE')
axes[0, 1].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[0, 1].set_ylabel('Normalized Density', fontsize=12)
axes[0, 1].set_title(f'Likelihood: {n_detections}/{n_observations} Detections', fontsize=14, fontweight='bold')
axes[0, 1].legend(fontsize=11)
axes[0, 1].grid(True, alpha=0.3)

# Plot 3: Posterior Distribution
axes[1, 0].fill_between(theta_values, posterior, alpha=0.6, color='red', label='Posterior')
axes[1, 0].axvline(stats['mean'], color='red', linestyle='--', linewidth=2, label='Posterior Mean')
axes[1, 0].axvspan(stats['ci_95'][0], stats['ci_95'][1], alpha=0.2, color='red',
label='95% Credible Interval')
axes[1, 0].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[1, 0].set_ylabel('Density', fontsize=12)
axes[1, 0].set_title('Posterior Distribution', fontsize=14, fontweight='bold')
axes[1, 0].legend(fontsize=11)
axes[1, 0].grid(True, alpha=0.3)

# Plot 4: All distributions together
axes[1, 1].plot(theta_values, prior, 'b-', linewidth=2.5, label='Prior', alpha=0.8)
axes[1, 1].plot(theta_values, likelihood_normalized, 'g-', linewidth=2.5, label='Likelihood', alpha=0.8)
axes[1, 1].plot(theta_values, posterior, 'r-', linewidth=2.5, label='Posterior', alpha=0.8)
axes[1, 1].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[1, 1].set_ylabel('Density', fontsize=12)
axes[1, 1].set_title('Bayesian Update: Prior → Posterior', fontsize=14, fontweight='bold')
axes[1, 1].legend(fontsize=11)
axes[1, 1].grid(True, alpha=0.3)

plt.tight_layout()
plt.savefig('bayesian_life_probability_2d.png', dpi=300, bbox_inches='tight')
plt.show()

# Visualization 2: Sequential Bayesian Update
fig, ax = plt.subplots(figsize=(14, 8))

# Simulate sequential observations
detections_sequence = [1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
colors = plt.cm.viridis(np.linspace(0, 1, len(detections_sequence) + 1))

# Start with prior
current_alpha = bayesian_model.prior_alpha
current_beta = bayesian_model.prior_beta

ax.plot(theta_values, beta.pdf(theta_values, current_alpha, current_beta),
linewidth=2.5, label=f'Initial Prior (n=0)', color=colors[0])

# Sequential update
cumulative_detections = 0
for i, detection in enumerate(detections_sequence):
cumulative_detections += detection
current_alpha += detection
current_beta += (1 - detection)

if (i + 1) % 3 == 0 or i == len(detections_sequence) - 1:
ax.plot(theta_values, beta.pdf(theta_values, current_alpha, current_beta),
linewidth=2, label=f'After n={i+1} obs ({cumulative_detections} det)',
color=colors[i+1], alpha=0.8)

ax.set_xlabel(r'Probability of Life ($\theta$)', fontsize=13)
ax.set_ylabel('Probability Density', fontsize=13)
ax.set_title('Sequential Bayesian Update: How Posterior Evolves with Data',
fontsize=15, fontweight='bold')
ax.legend(fontsize=10, loc='upper right')
ax.grid(True, alpha=0.3)

plt.tight_layout()
plt.savefig('sequential_bayesian_update.png', dpi=300, bbox_inches='tight')
plt.show()

# Visualization 3: 3D Surface Plot - Posterior as Function of Observations
fig = plt.figure(figsize=(16, 12))

# Create 3D subplots
ax1 = fig.add_subplot(221, projection='3d')
ax2 = fig.add_subplot(222, projection='3d')
ax3 = fig.add_subplot(223, projection='3d')
ax4 = fig.add_subplot(224)

# Create meshgrid for 3D surface
n_obs_range = np.arange(1, 31)
theta_range = np.linspace(0, 1, 100)
N_OBS, THETA = np.meshgrid(n_obs_range, theta_range)

# Surface 1: Posterior mean as function of n_obs and n_detections
detection_ratios = [0.2, 0.33, 0.5, 0.67]
for ratio in detection_ratios:
posterior_means = np.zeros_like(N_OBS, dtype=float)
for i, n in enumerate(n_obs_range):
n_det = int(n * ratio)
post_alpha = bayesian_model.prior_alpha + n_det
post_beta = bayesian_model.prior_beta + (n - n_det)
mean = post_alpha / (post_alpha + post_beta)
posterior_means[:, i] = mean

ax1.plot_surface(N_OBS, THETA * 0 + ratio, posterior_means, alpha=0.4,
label=f'Detection rate={ratio:.0%}')

ax1.set_xlabel('Number of Observations', fontsize=10)
ax1.set_ylabel('Detection Rate', fontsize=10)
ax1.set_zlabel('Posterior Mean', fontsize=10)
ax1.set_title('Posterior Mean vs. Observations', fontsize=12, fontweight='bold')
ax1.view_init(elev=25, azim=45)

# Surface 2: Posterior variance (uncertainty)
Z_variance = np.zeros_like(N_OBS, dtype=float)
for i, n in enumerate(n_obs_range):
for j, theta in enumerate(theta_range):
n_det = int(n * theta)
post_alpha = bayesian_model.prior_alpha + n_det
post_beta = bayesian_model.prior_beta + (n - n_det)
variance = (post_alpha * post_beta) / \
((post_alpha + post_beta)**2 * (post_alpha + post_beta + 1))
Z_variance[j, i] = variance

surf2 = ax2.plot_surface(N_OBS, THETA, Z_variance, cmap='coolwarm', alpha=0.8)
ax2.set_xlabel('Number of Observations', fontsize=10)
ax2.set_ylabel(r'True $\theta$', fontsize=10)
ax2.set_zlabel('Posterior Variance', fontsize=10)
ax2.set_title('Uncertainty Reduction with Data', fontsize=12, fontweight='bold')
ax2.view_init(elev=25, azim=135)

# Surface 3: 95% Credible Interval Width
Z_ci_width = np.zeros_like(N_OBS, dtype=float)
for i, n in enumerate(n_obs_range):
for j, theta in enumerate(theta_range):
n_det = int(n * theta)
post_alpha = bayesian_model.prior_alpha + n_det
post_beta = bayesian_model.prior_beta + (n - n_det)
ci_lower = beta.ppf(0.025, post_alpha, post_beta)
ci_upper = beta.ppf(0.975, post_alpha, post_beta)
Z_ci_width[j, i] = ci_upper - ci_lower

surf3 = ax3.plot_surface(N_OBS, THETA, Z_ci_width, cmap='viridis', alpha=0.8)
ax3.set_xlabel('Number of Observations', fontsize=10)
ax3.set_ylabel(r'True $\theta$', fontsize=10)
ax3.set_zlabel('95% CI Width', fontsize=10)
ax3.set_title('Credible Interval Width', fontsize=12, fontweight='bold')
ax3.view_init(elev=25, azim=45)

# Plot 4: Heatmap of posterior mean
n_obs_heatmap = np.arange(1, 51)
theta_heatmap = np.linspace(0, 1, 50)
posterior_mean_grid = np.zeros((len(theta_heatmap), len(n_obs_heatmap)))

for i, n in enumerate(n_obs_heatmap):
for j, theta in enumerate(theta_heatmap):
n_det = int(n * theta)
post_alpha = bayesian_model.prior_alpha + n_det
post_beta = bayesian_model.prior_beta + (n - n_det)
posterior_mean_grid[j, i] = post_alpha / (post_alpha + post_beta)

im = ax4.imshow(posterior_mean_grid, aspect='auto', origin='lower',
extent=[1, 50, 0, 1], cmap='RdYlGn', vmin=0, vmax=1)
ax4.set_xlabel('Number of Observations', fontsize=11)
ax4.set_ylabel('Detection Rate', fontsize=11)
ax4.set_title('Posterior Mean Heatmap', fontsize=12, fontweight='bold')
cbar = plt.colorbar(im, ax=ax4)
cbar.set_label('Posterior Mean', fontsize=10)

plt.tight_layout()
plt.savefig('bayesian_life_probability_3d.png', dpi=300, bbox_inches='tight')
plt.show()

# Visualization 4: Sensitivity Analysis
fig, axes = plt.subplots(2, 2, figsize=(15, 12))

# Different prior beliefs
priors_to_test = [
(1, 1, "Uniform (uninformative)"),
(2, 10, "Skeptical (our example)"),
(5, 5, "Neutral"),
(10, 2, "Optimistic")
]

for prior_params in priors_to_test:
alpha, beta_param, label = prior_params
model = BayesianLifeProbability(alpha, beta_param)
posterior = model.posterior_distribution(theta_values, n_observations, n_detections)
axes[0, 0].plot(theta_values, posterior, linewidth=2.5, label=label, alpha=0.8)

axes[0, 0].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[0, 0].set_ylabel('Posterior Density', fontsize=12)
axes[0, 0].set_title('Sensitivity to Prior Beliefs', fontsize=14, fontweight='bold')
axes[0, 0].legend(fontsize=11)
axes[0, 0].grid(True, alpha=0.3)

# Different amounts of data (same detection rate)
data_amounts = [(5, 2), (10, 3), (15, 5), (30, 10), (60, 20)]
for n, k in data_amounts:
posterior = bayesian_model.posterior_distribution(theta_values, n, k)
axes[0, 1].plot(theta_values, posterior, linewidth=2.5,
label=f'n={n}, k={k}', alpha=0.8)

axes[0, 1].set_xlabel(r'Probability of Life ($\theta$)', fontsize=12)
axes[0, 1].set_ylabel('Posterior Density', fontsize=12)
axes[0, 1].set_title('Convergence with More Data (~33% detection rate)',
fontsize=14, fontweight='bold')
axes[0, 1].legend(fontsize=11)
axes[0, 1].grid(True, alpha=0.3)

# Posterior mean vs. sample size
sample_sizes = np.arange(1, 101)
posterior_means = []
ci_widths = []

for n in sample_sizes:
k = int(n * 0.33) # 33% detection rate
stats = bayesian_model.posterior_statistics(n, k)
posterior_means.append(stats['mean'])
ci_widths.append(stats['ci_95'][1] - stats['ci_95'][0])

axes[1, 0].plot(sample_sizes, posterior_means, 'b-', linewidth=2.5, label='Posterior Mean')
axes[1, 0].axhline(0.33, color='red', linestyle='--', linewidth=2, label='True Rate (MLE)')
axes[1, 0].fill_between(sample_sizes,
np.array(posterior_means) - np.array(ci_widths)/2,
np.array(posterior_means) + np.array(ci_widths)/2,
alpha=0.3, color='blue', label='95% CI')
axes[1, 0].set_xlabel('Sample Size', fontsize=12)
axes[1, 0].set_ylabel('Posterior Mean', fontsize=12)
axes[1, 0].set_title('Convergence of Posterior Mean', fontsize=14, fontweight='bold')
axes[1, 0].legend(fontsize=11)
axes[1, 0].grid(True, alpha=0.3)

# Uncertainty reduction
axes[1, 1].plot(sample_sizes, ci_widths, 'purple', linewidth=2.5)
axes[1, 1].set_xlabel('Sample Size', fontsize=12)
axes[1, 1].set_ylabel('95% Credible Interval Width', fontsize=12)
axes[1, 1].set_title('Uncertainty Reduction with Sample Size', fontsize=14, fontweight='bold')
axes[1, 1].grid(True, alpha=0.3)

plt.tight_layout()
plt.savefig('sensitivity_analysis.png', dpi=300, bbox_inches='tight')
plt.show()

print("\nVisualization complete! All graphs have been generated.")

Detailed Code Explanation

Class Structure

The BayesianLifeProbability class encapsulates the entire Bayesian framework:

  1. Initialization: Sets prior Beta distribution parameters (α, β) representing our initial beliefs
  2. Prior Distribution: Computes the prior probability density using scipy.stats.beta
  3. Likelihood Function: Models observation probability using binomial distribution
  4. Posterior Distribution: Leverages the conjugate prior property where Beta + Binomial = Beta
  5. Statistical Measures: Calculates mean, mode, variance, and credible intervals
  6. Information Gain: Quantifies learning using Kullback-Leibler divergence

Mathematical Implementation

The conjugate prior property is crucial for computational efficiency:

Beta(α,β)+Binomial(n,k)=Beta(α+k,β+nk)

This allows direct calculation without numerical integration.

Visualization Strategy

2D Plots: Show the Bayesian update process

  • Prior reflects initial skepticism about life
  • Likelihood captures the observed data (5/15 detections)
  • Posterior combines both, shifting toward the data while retaining prior influence

Sequential Update: Demonstrates how the posterior evolves observation-by-observation, showing the dynamic nature of Bayesian learning

3D Surfaces: Reveal relationships between:

  • Number of observations and posterior mean
  • True probability and posterior variance (uncertainty)
  • Sample size and credible interval width

Sensitivity Analysis: Tests robustness by varying:

  • Prior beliefs (uniform, skeptical, neutral, optimistic)
  • Sample sizes at constant detection rate
  • Showing convergence to true value as data accumulates

Performance Optimization

The code is optimized for Google Colab through:

  • Vectorized NumPy operations instead of loops where possible
  • Efficient use of SciPy’s statistical functions
  • Pre-computation of meshgrids for 3D plots
  • Strategic sampling densities (100-1000 points) balancing accuracy and speed

Statistical Interpretation

The posterior mean represents our best point estimate after observing data. The 95% credible interval quantifies uncertainty - we can state with 95% confidence that the true probability lies within this range. The uncertainty reduction metric shows how much more confident we’ve become compared to our prior beliefs.

Results

Execution Output

======================================================================
BAYESIAN ESTIMATION OF LIFE EXISTENCE PROBABILITY
======================================================================

Prior Distribution: Beta(α=2, β=10)
Prior Mean: 0.1667

Observational Data:
  - Number of observations: 15
  - Positive detections: 5
  - Detection rate: 33.33%

Posterior Statistics:
  - Mean: 0.2593
  - Mode: 0.2400
  - Standard Deviation: 0.0828
  - 95% Credible Interval: [0.1157, 0.4365]

Information Gain (KL Divergence): 29.1803
Uncertainty Reduction: 19.88%
======================================================================




Visualization complete! All graphs have been generated.

Graphical Results

The first figure displays the complete Bayesian update:

  • Prior: Peaked around 0.17, reflecting skepticism
  • Likelihood: Centered at 0.33 (5/15), showing the data
  • Posterior: Compromise around 0.27, balancing prior and data

The sequential update figure illustrates how uncertainty decreases as observations accumulate, with the distribution becoming sharper and more concentrated.

The 3D visualizations reveal:

  • Posterior mean converges to the true detection rate with more observations
  • Variance decreases as O(1/n), showing uncertainty reduction
  • Credible intervals narrow systematically with sample size

The sensitivity analysis demonstrates robustness - different priors converge to similar posteriors with sufficient data, validating the Bayesian approach.

Conclusion

Bayesian inference provides an optimal framework for estimating life existence probability by:

  1. Incorporating prior scientific knowledge
  2. Systematically updating beliefs with observational data
  3. Quantifying uncertainty at every step
  4. Minimizing posterior variance (maximum information)

This methodology is applicable to astrobiology, exoplanet characterization, and SETI signal analysis. The conjugate prior approach ensures computational efficiency while maintaining statistical rigor. As more exoplanets are discovered and characterized, this Bayesian framework will become increasingly valuable for prioritizing targets and interpreting biosignature detections.