AnyTrading - イーサリアム投資を強化学習で実行 学習アルゴリズムACKTR(8番目)

1月17日の記事にて学習アルゴリズムACKTRでイーサリアムの学習済みモデルを10種類作成しました。

そのうちの8番目の学習済みモデルに対して、30回連続で投資検証を行います。

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

# 勝敗をカウントする
def count(lst):
cnt_win = 0
cnt_lose = 0
cnt_draw = 0
for x in lst:
if x == 0:
cnt_draw += 1
elif x > 0:
cnt_win += 1
else:
cnt_lose += 1

return cnt_win, cnt_lose, cnt_draw

def simulation(i, prm):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)
# 環境の生成
env = gym.make('forex-v0', frame_bound=(prm['start_idx'],
prm['end_idx']),
window_size = prm['window_size'])
env = Monitor(env, log_dir, allow_early_resets=True)
# シードの指定
env.seed(0)
set_global_seeds(0)
# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])
# モデルの読み込み
# model = PPO2.load('model{}'.format(i))
model = ACKTR.load('model{}'.format(i))
# モデルのテスト
env = gym.make('forex-v0', frame_bound=(prm['start_idx'] + prm['move_idx'],
prm['end_idx'] + prm['move_idx']),
window_size = prm['window_size'])
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state) # 0 or 1
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward']) # info: {'total_reward': 8610370000.0, 'total_profit': 1.7844206334206751, 'position': 1} 8610370000.0
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()

cnt_win = 0
cnt_lose = 0
cnt_draw = 0
for move_idx in range(0, 1001, 50):
labels = []
means = []
prm = {'window_size': 10, #window_size 参照すべき直前のデータ数
'start_idx' : 10, #start_idx 学習データの開始位置
'end_idx' : 1010, #end_idx 学習データの終了位置
'move_idx' : move_idx} #学習データからの移動分。移動したものを検証データとする。
for i in range(30):
labels.append('{}'.format(i))
simulation(8, prm)

x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

cnt = count(means)
plt.title('[Average]{:,.0f} [Win]{} [Lose]{} [Draw]{}'.format(np.average(means), cnt[0], cnt[1], cnt[2]))

plt.savefig('trading{:03d}.png'.format(move_idx))

if cnt[0] == cnt[1]:
cnt_draw += 1
elif cnt[0] > cnt[1]:
cnt_win += 1
else:
cnt_lose += 1

print('{}勝 {}敗 {}分'.format(cnt_win, cnt_lose, cnt_draw))

実行結果

実行結果は次のようになりました。

0日移動 50日移動 100日移動
150日移動 200日移動 250日移動
300日移動 350日移動 400日移動
450日移動 500日移動 550日移動
600日移動 650日移動 700日移動
750日移動 800日移動 850日移動
900日移動 950日移動

勝敗を集計すると0勝19敗1分となりました。

ほぼ全敗ですね。グラフを見るとマイナス収益の赤グラフがほとんどで残念な結果です。

ここ4回の検証結果では、交互に全敗と全勝の結果となっていてなかなか興味深いです。

次回はまた別の学習済みモデルを検証していきます。